Pertanyaan
Pangkat
- 8p2q × 2pq3
- 641⁄2 + 811⁄3
- 25 + 320 - 45
Merasionalkan Akar
- 4⁄5
- 35⁄23
- 5⁄3 - 2
- 5 - 7⁄5 - 2
Operasi Pangkat
- (8p23)3 ÷ 2pq
- (a1⁄3b1⁄3)6⁄(a2⁄3b4⁄3)9
Persamaan Pangkat
- 2x + 8 = 64
- 162x + 3 = 32
Jawaban
- 16p3q4
-
641⁄2 + 811⁄3
= 64 + 381
= 8 + 381
-
25 + 320 - 45
= 65 + 320
= 65 + 34 × 5
= 65 + 322 × 5
= 65 + 3 × 25
= 65 + 65
= 125
-
4⁄5
= 4⁄5 × 5⁄5 = 45⁄5
-
35⁄23
= 35⁄23 × 3⁄3
= 315⁄2 × 3
= 15⁄2
-
5⁄3 - 2
= 5⁄3 - 2 × 3 + 2⁄3 + 2
= 5(3 + 2)⁄(3)2 - (2)2
= 5(3 + 2)⁄3 - 2 = 5(3 + 2)⁄1
= 5(3 + 2)
-
5 - 7⁄5 - 2
= 5 - 7⁄5 - 2 × 5 + 2⁄5 + 2
= (5 - 7) × (5 + 2)⁄(5)2 - (2)2
= 5 + 10 - 35 - 14⁄5 - 2 = 5 + 10 - 35 - 14⁄3
-
(8p23)3 ÷ 2pq
= (24p2)3 ÷ 2pq
= 243 p6 ÷ 2pq
= 6912p5 ÷ q
-
= (a1⁄3b1⁄3)6⁄(a2⁄3b4⁄3)9
=
(a1⁄3)6 (b1⁄3)6
⁄
(a2⁄3)9 (b4⁄3)9
=
a2 b2
⁄
a6 b12
= a-4 b-10
-
2x + 8 = 64
= 2x + 8 = 26
= x + 8 = 6
= x = 6 - 8
= x = -2
-
162x + 3 = 32
= (24)2x + 3 = 26
= 28x + 12 = 26
= 8x + 12 = 6
= 8x = 6 - 12
= 8x = 6
= x = -6⁄8
= x = -3⁄4